The Fermilab/NICADD Photoinjector Laboratory

The FNPL injector

- ✓ Extensive diagnostics suite for beam dynamics studies,
- ✓ FNPL control system allows remote operation by off-site team (DESY, LBNL, Univ. Michigan,...)

Typical parameters:

Р	15-16 MeV/c

Trans. ε 3.7 mm-mrad @ 1nC

12.6 mm-mrad @ 8nC

 $\delta p/p$ 0.25 % @ 1nC

Ipeak (BC OFF) ~75-330 A

Ipeak (BC ON) ~218-1740 A

Past year activities:

- Generation and study of flat beams
- Commissionning of new diagnostics
- ✓ Improvement of operation/modeling of the beamline
- ✓ Observation of plasma-based acceleration

Generation/Study of flat beams

Flat beams for LCs obtained in damping rings; for e- they can be generated out of the injector.

- ✓ Photocathode is immersed in a B-field
- ✓ Solenoid fringe field → beam acquires an kinematic angular momentum (fully x-y coupled motion)

✓ A skew quad. channel decouples the motion and yields a beam with a high transverse emittance ratio :

$$\frac{\varepsilon_x}{\varepsilon_y} \propto B_z^2$$

Best emittance ratio achieved to date: $(\beta \gamma \epsilon_y)/(\beta \gamma \epsilon_x) = 45/0.9$ mm-mrad= 50 for Q=0.5 nC

Rf-gun studies

- ✓ Study of rf-breakdown rate in long rf-macropulse and test of a method to significantly reduce the breakdown rate (by shaping the "turn-on" of the rf-pulse)
- ✓ Using a set of microphones placed on the rf-gun cavity, investigated the origin site of rf-breakdown (origin is the rf-coupling slot)
- ✓ Experimental exploration of *in situ* "rejuvenation" of photocathode using a multipacting-based processing technique

Beam-based alignment of e-source components

Measurement of TESLA cavity Transfer matrix

Frequency-domain bunch length diagnotics

- ✓ Electrons in a bunched beam can radiate coherently at wavelengths λ>σz
- ✓ Radiated pulse mirrors long. bunch distribution
- ✓Interferometry of transition radiation

Total radiated energy by N e-:

$$W_{Ne}(\lambda) = W_{1e}(\lambda)(N + N(N - 1)|f(\lambda)|^2)$$

Energy radiated by 1 electron Bunch form factor

Plasma wakefield acceleration

The plasma device

6-8 nC, 10^{14} /cc plasma, 1 mm σ_z Recent results indicates an accelerating field of ~100 MV/m has been achieved

(N. Barov et al., NIU)

✓ High peak current e- beam injected in a plasma induced density modulation waves

✓ Electrons energy along the bunch is modified accordingly to the induced wake-field, energy gain can occur for part of the bunch

Short term upgrade of FNPL

- ✓ Improved emittance ratio in the flat beam configuration
- ✓Bunch compression of flat beam possible
- ✓ Reconfiguration + addition of diagnostics
- ✓ Accommodate new experiments

New setup for flat beams

✓ Compressed flat beams have applications in SASE Smith-Purcell radiation sources (in refractive mode or "image charge undulator") to generate FIR ps-pulses

Plasma density transition trapping

- ✓ Self-trapping mechanism based on rapid change in the wakefield wavelength at a steep drop in the plasma density
- ✓ Plasma electrons are dephased into an accelerating field of the plasma wake

Assumed parameters for drive-beam:

Captured beam parameters:

Laser acceleration

- •Laser beam is used to provide longitudinal accelerating E-field
- •laser and e- beams are "coupled" in the "open iris structure" (radius>> λ)

• Laser operates in the TEM₀₁* mode, since it provides the largest possible Ez-field.

TEM₀₁* generated from TEM₀₁ mode via a Mach-Zehnder interferometer

- •For a laser peak power of 34 TW Ea=0.54 GV/m
- •At FNPL anticipated energy gain of 2.5 MeV (R. Tikhoplav et al., Rochester)

Test of dipole-mode and 3rd harmonic accelerating cavity

•3.9 Ghz dipole mode cavity developed for CKM experiment in main injector

 (z,δ) after bunch compressor

(x,y) at spectrometer, cavity deflecting vertically, horizontal axis is δ

•3.9 Ghz accelerating mode cavity, developed to remove longitudinal phase space distortions and increase the peak current

- •Cavity will be tested in FNPL and will provide a unique diagnostics to study slice parameters along the bunch (e.g. ε) and recontruct long phase space
- •Cavity in conjuction with transverse collimation can be used to generate ultra-short bunches

R & D for polarized rf-gun

- ✓Improve rf-gun to enable generation of polarized beams:
 - Vacuum pressure <10⁻¹² Torr
 - GaAs photocathode in rf-gun
 - lifetime and dark current studies
- ✓ Use spare rf-gun to explore the use of cryogenic N-cooled cavity

Longer term project plan

✓Increase beam energy consistent with a fully integrated injector system for multi-disciplinary applications

People

N. Barov, NIU

K. Bishofberger, UCLA (gr. s)

C. Bohn, NIU/FNAL

K. Desler P.Piot

D. Edwards J. Santucci

H. Edwards Y.-E. Sun, U. Chicago (gr. s)

M. Huening R. Tikhoplav, U. Rochester (gr. s)

D. Mihalcea, NIU

Active at a distance:

J.-P. Carneiro, DESY

K. Floettmann, DESY

U. Happek, U. Georgia

W. Hartung, MSU

S. Lidia, LBNL

D. Sertore, INFN-Milano

M. Thompson, UCLA (gr. s)

S. Wang, U. Indiana (gr. s)

Summary

Past month activity:

- Continued flat beam studies
- ✓ Improved operation + model of the accelerator with the help of new diagnostics (BPM, bunch length)
- ✓ Plasma acceleration was observed

Upgrade planned in April/May 2003:

- ✓ Continue flat beam study with an <u>improved set-up</u>
- ✓ Study the compression of flat beam + applications
- ✓ Plasma-based e- source will be installed by the summer
- ✓ Install "open iris structure" for laser acceleration after the plasma source experiment is completed

Longer term projects:

- ✓ Beam test of the CKM and 3rd harmonic cavities
- ✓ R&D on polarized rf-guns
- ✓ Energy upgrade
- Gun development